Convergence of cubic spline interpolants

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Rational Interpolants∗

The convergence of (diagonal) sequences of rational interpolants to an analytic function is investigated. Problems connected with their definition are shortly discussed. Results about locally uniform convergence are reviewed. Then the convergence in capacity is studied in more detail. Here, a central place is taken by a theorem about the convergence in capacity of rational interpolants to funct...

متن کامل

Hammerstein uniform cubic spline adaptive filters: Learning and convergence properties

In this paper a novel class of nonlinear Hammerstein adaptive filters, consisting of a flexible memory-less function followed by a linear combiner, is presented. The nonlinear function involved in the adaptation process is based on a uniform cubic spline function that can be properly modified during learning. The spline control points are adaptively changed by using gradient-based techniques. T...

متن کامل

Numerical integration using spline quasi-interpolants

In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.

متن کامل

Effortless construction of hierarchical spline quasi-interpolants

Quasi-interpolation is a well-known technique to construct accurate approximants to a given set of data or a given function by means of a local approach. A quasi-interpolant is usually obtained as a linear combination of a given system of blending functions that form a convex partition of unity and possess a small local support. These properties ensure both numerical stability and local control...

متن کامل

Quadratic Spline Quasi - Interpolants on Bounded Domains

We study some C1 quadratic spline quasi-interpolants on bounded domains  ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain  and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1970

ISSN: 0021-9045

DOI: 10.1016/0021-9045(70)90065-1